Искусственный интеллект. Алгоритмы машинного обучения на языке Python
Мобильное Электронное Образование
Описание
Для оплаты обучения по программе проекта "Цифровые профессии 2021" необходимо использовать промокод UNIVERSITET2035 для получения скидки 50% от основной стоимости программы профессиональной переподготовки при ее оплате на официальном сайте организации (странице программы).
Оставшуюся сумму можно оплатить при помощи беспроцентной рассрочки оплаты на срок до 12 месяцев.
Основной целью программы профессиональной переподготовки «Искусственный интеллект. Алгоритмы машинного обучения на языке Python» (далее – Программа) является подготовка специалистов в области разработки алгоритмов машинного обучения: дата-сайентистов и ML-инженеров.
Программа является программой профессиональной переподготовки и предназначена для:
- инженеров и технических специалистов различного профиля, заинтересованных во внедрении технологий ИИ в свою деятельность;
- инженеров-программистов и программистов, заинтересованных в смене или расширении профиля своей деятельности;
- преподавателей и научных работников.
Программа знакомит слушателей:
- с основными принципами машинного обучения (обучение с учителем, обучение без учителя, обучение с подкреплением);
- основами методологии CRISP DM, этапами создания проектов ИИ;
- основами работы с Python;
- методами работы с базовыми библиотеками анализа данных (numpy, pandas, matplotlib, SQLite);
- сферами использования машинного обучения (анализ данных, компьютерное зрение, обработка естественного языка).
В программе раскрываются:
- особенности использования ИИ для решения социальных и экономических проблем;
- предварительная обработка и визуализация данных;
- алгоритмы машинного обучения для решения задач классификации, кластеризации, уменьшения размерности, регрессии;
- метрики для оценки эффективности работы алгоритма машинного обучения;
- возможности внедрения разработанных и обученных алгоритмов.
Основной формой реализации Программы является очная форма с использованием дистанционных образовательных технологий.
Количество часов, отведённое на выполнение практических заданий, в т.ч. в режиме самостоятельной работы составляет 198 часов (78%)
Программа профессиональной переподготовки разработана на основании Письма Министерства науки и высшего образования РФ от 2 июля 2021 г. N МН-5/2657 "О направлении информации"
Часов в программе
Цель программы
Актуальность
В связи с этим все чаще мы сталкиваемся с понятием искусственно интеллекта (ИИ) в различных сферах: от мобильных приложений до горнодобычи. При этом под искусственным интеллектом понимают реализацию алгоритмов машинного обучения, которые позволяют имитировать когнитивные функции человека. Рост интереса к сфере искусственного интеллекта и машинного обучения делает востребованными профессионалов в этой области: людей, которые умеют оценивать потенциал внедрения машинного обучения, собирать и подготавливать наборы данных, строить и оценивать эффективность моделей машинного обучения, а также осуществлять внедрение решений ИИ на конкретную инфраструктуру.
Входная диагностика 2 часа
В первой части слушателю предлагается выбрать утверждения, наиболее адекватно описывающие его владение языком программирования Python, методами машинного обучения. Каждому утверждению присваивается балльная оценка (от 0 до 1 балла).
Во второй части теста слушателям предлагаются для решения мини-упражнения. Мини-упражнения представляют собой ячейки с кодом, где пропущены некоторые строчки или допущены ошибки. Код необходимо исправить.
Итоговая аттестация 2 часа
Компетенции
Профессиональные
Готовность использовать знание основных методов искусственного интеллекта в последующей профессиональной деятельности в качестве инженеров, технологов
Слушатель должен знать:
- постановку проблем математического и информационного моделирования сложных систем;
- взаимосвязь и фундаментальное единство естественных наук/
Слушатель должен уметь:
- работать на современной электронно-вычислительной технике;
- планировать процесс моделирования и вычислительного эксперимента.
Слушатель должен владеть:
- методами постановки задач и обработки результатов компьютерного моделирования;
- навыками самостоятельной работы в лаборатории на современной вычислительной технике.
Способность совершенствовать и разрабатывать новых методы, модели, алгоритмы, технологии и инструментальные средства работы с большими данными
Слушатель должен знать:
- основные методы машинного обучения;
- основные библиотеки для машинного обучения (Scikit-learn, Keras, TensorFlow).
Слушатель должен уметь:
- работать в средах разработки для языка Python;
- реализовывать алгоритмы машинного обучения с учителем, без учителя, обучения с подкреплением.
Слушатель должен владеть:
- навыками использования машинного обучения применительно к практическим задачам;
- навыками работы с современным программным и аппаратным инструментарием для реализации алгоритмов машинного обучения.
Способность выполнять подготовку данных для проведения аналитических работ по исследованию больших данных
Слушатель должен знать:
- задачи и методы интеллектуального анализа данных;
- основные принципы, используемые при сборе и подготовке данных.
Слушатель должен уметь:
- реализовывать сбор и подготовку данных в задачах анализа данных, компьютерного зрения, обработки естественного языка;
- работать с библиотеками Pandas, Numpy и Matplotlib.
Слушатель должен владеть:
- навыками получения данных, пригодных для использования в машинном обучении;
- навыками оценки пригодности и достаточности данных для проведения дальнейшего машинного обучения.
Способность проводить аналитические исследования с применением технологий больших данных в соответствии с требованиями заказчика
Слушатель должен знать:
- основные этапы разработки проекта согласно методологии CRISP DM;
- основные элементы дизайн-мышления.
Слушатель должен уметь:
- оценивать эффективность применяемых методов машинного обучения;
- уметь развертывать модель в конечной среде.
Слушатель должен владеть:
- навыками представления результатов работы проекта;
- навыками формулирования предложений по дальнейшему совершенствованию работы модели машинного обучения.
Требования
Образование
- Высшее образование
Модули
свернутьПреподаватели

Тращенков
Сергей Викторович
Мобильное Электронное Образование
Заведующий кафедрой программирования и вычислительных технологий
https://www.researchgate.net/profile/Sergei-TrashchenkovУказана полная стоимость. Вы сможете получить скидку на этот курс от 50% до 100% по проекту «Цифровые профессии» в зависимости от льготной категории.
Авторизуйтесь чтобы записатьсяПрофстандарт
СПЕЦИАЛИСТ ПО БОЛЬШИМ ДАННЫМ
06.042Ответственный за программу
+7(922)7404272